

DPP No. 50

Total Marks : 33

Max. Time : 36 min.

M.M., Min.

Topics : Vector, Solution of Triangle, Function

Type of Questions	Type of	Questions	
-------------------	---------	-----------	--

Single choice Objective (no negative marking) Q.1(3 marks, 3 min.)[3, 3]Multiple choice objective (no negative marking) Q.2, 3(5 marks, 4 min.)[10, 8]Subjective Questions (no negative marking) Q. 4, 5, 6, 7, 8(4 marks, 5 min.)[20, 25]

1. P, Q have position vectors $\vec{a} \ll \vec{b}$ relative to the origin 'O' & X, Y divide \vec{PQ} internally and externally

respectively in the ratio
$$2:1$$
. Vector XY =

(A)
$$\frac{3}{2}(\vec{b}-\vec{a})$$
 (B) $\frac{4}{3}(\vec{a}-\vec{b})$ (C) $\frac{5}{6}(\vec{b}-\vec{a})$ (D) $\frac{4}{3}(\vec{b}-\vec{a})$

2. If in a triangle ABC, $b \cos^2 \frac{A}{2} + a \cos^2 \frac{B}{2} = \frac{3c}{2}$, then

(A)
$$c^2 \ge ab$$
 (B) $\frac{a}{c} + \frac{c}{b} + \frac{b}{a} \ge 3$ (C) $\frac{a+c}{2c-a} + \frac{b+c}{2c-b} \ge 4$ (D) a, b, c are in A.P.

3. If 'O' is the circumcentre of the \triangle ABC and R₁, R₂ and R₃ are the radii of the circumcircles of triangles OBC, OCA & OAB respectively, then $\frac{a}{R_1} + \frac{b}{R_2} + \frac{c}{R_3}$ has the value equal to

(A)
$$\frac{a b c}{2 R^3}$$
 (B) $\frac{R^3}{a b c}$ (C) $\frac{4 \Delta}{R^2}$ (D) $\frac{a b c}{R^3}$

- 4. In a $\triangle ABC$, prove that $\frac{(a+b+c)^2}{a^2+b^2+c^2} = \frac{\cot{\frac{A}{2}} + \cot{\frac{B}{2}} + \cot{\frac{C}{2}}}{\cot{A} + \cot{B} + \cot{C}}$
- 5. If the solution of the equation $\sqrt{2 + \sqrt{2 + \sqrt{2 + x}}} + \sqrt{3}\sqrt{2 \sqrt{2 + \sqrt{2 + x}}} = 2x$, where x > 0 is given by x = a cos(b π /c) where argument of cosine function lies in [0, π /2), a, b, c \in N and b, c are relatively prime, find the value of (a + b + c).
- **6.** ABCD is a quadrilateral and E the point of intersection of the lines joining the middle points of opposite sides. Show that the resultant of \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} and \overrightarrow{OD} is equal to 4 \overrightarrow{OE} , where O is any point.
- 7. The point D, E, F divide the respective sides of $\triangle ABC$ in the ratio as shown in figure. P is a point in AB which divides AB in the ratio 1 : 3 internally prove that $5(\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF}) = 2\overrightarrow{CP}$

🕀 www.studentbro.in

8. Find all the values of a for which the function $f(x) = (a^2 - 3a + 2) \cos\left(\frac{x}{2}\right) + (a - 1) x$ possesses critical points.

CLICK HERE

Answers Key

- **1.** (D) **2.** (A)(B)(C) **3.** (C)(D) **5.** 37
- **8.** $(-\infty, 0] \cup [4, \infty) \cup \{1\}$

Get More Learning Materials Here : 📕

